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LETTER TO THE EDITOR 

The low-temperature specific heat anomaly of the 
isotropic one-dimensional Heisenberg antiferromagnet 
(S = &) in a magnetic field 

Kong-Ju-Bock Lee and P Schlottmann 
Department of Physics, Temple University, Philadelphia, PA 19122, USA 

Received 21 February 1989 

Abstract. The specific heat of the isotropic S = 1 Heisenberg antiferromagnetic chain is 
proportional to the temperature at low T. The proportionality constant y is a function of 
field. We show that the low-field limit is anomalous in the sense that limH,o limr+o y = 
(1 + *)/3 differs from limr,o limH," y = %. We also obtain an approximate inter- 
polation formula between these two limits for situations in which H and T tend to zero 
simultaneously. 

The magnetic susceptibility of the isotropic antiferromagnetic spin-f Heisenberg chain 
at zero temperature and in a small magnetic field is given by ( J  = 1) 

x = (2/n2) (1 + 1/211n HI - lnlln H1/4 ln2 H + . . .). (1) 
The zero-field constant was evaluated by Griffiths (1964) , the first logarithmic correction 
was anticipated by Yang and Yang (1966) and calculated by Babujian (1983), while the 
next-to-leading logarithmic contribution was obtained by Lee and Schlottmann (1987). 

The zero-field specific heat of the Heisenberg antiferromagnet was found to be 
proportional to the temperature at low T ,  the proportionality constant y being equal to 
i. This result has been obtained in two ways: (i) studying the y of the anisotropic (planar- 
Heisenberg) chain in the limit of vanishing anisotropy (Yamada 1969 and Takahashi 
1973) and (ii) by direct integration of the low-temperature solution of the thermodynamic 
Bethe ansatz equations (Babujian 1983). 

The non-analytic field dependence of the susceptibility suggests an anomalous behav- 
iour of the low-temperature specific heat in the presence of a weak magnetic field. The 
low-temperature specific heat of the anisotropic Heisenberg chain as a function of the 
anisotropy and the applied magnetic field has been studied by Johnson and McCoy 
(1972). They noted that the specific heat of the isotropic antiferromagnet in zero field 
has a singular behaviour. Depending on the way the anisotropy parameter and the 
magnetic field approach zero the specific heat is either proportional to Tor exponentially 
activated due to the antiferromagnetic Ising-Heisenberg gap. Since this gap vanishes in 
the isotropic limit, it is expected that C CC T with the proportionality constant y being a 
function of HIT.  

It is the purpose of this Letter to investigate the properties of C in the low-T and 
small-Hlimit. Our main result is that the zero-field and in-field y-coefficients differ, i.e., 
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We further provide an interpolation formula between these two values for situations in 
which Hand  T tend to zero simultaneously. 

To derive our results we use the thermodynamic Bethe unsutz equations of the 
Heisenberg chain (Takahashi 1971, Gaudin 1971). The excited states of the chain consist 
of magnons and bound states of magnons. A bound state of n magnons is described by 
the thermodynamic energy potential &,(A) with A being a real rapidity (related to the 
momentum). The functions &,(A) satisfy the following non-linearly coupled integral 
equations (Takahashi 1971) 

oc 

(3) 
H W  n 

= 2n - - -- + 
T T n 2 + A 2  m = l  

ln(1 + A,,  * l n ( l +  

where J is the antiferromagnetic coupling constant, the centred asterisk denotes a 
convolution and the integral kernel is given by 

The free energy is given by 

F(T, H )  = -J ln  2 - T dA Go@) ln(1 + eal(A)iT) I: 
where G,(A) is defined by 

1 e-nlol 
G, (A) = - d o  e-'@'' 2x 2 cosh 1 0 1  ' 

(4) 

The functions E, are symmetric, E,( -A) = &,(A) and are monotonically increasing 
for A > 0. Takahashi (1971) has shown that for n # 1, the potentials &,(A) are positive 
for all A, while .s1(A) changes sign if H # 0. We define a parameter B such that E ~ ( + B )  = 
0. This implies that in the limit T+ 0 with field, the contributions of m L 2 to the 
integrals in equation (3) are exponentially small and negligible. Hence, we can rewrite 
the integral equation (3) for n = 1 as 

= H - 2nJG0 + G I  * Tln(1 + ecl/T). ( 6 )  
To obtain the low-temperature coefficient y of the free energy, we expand &,(A) to order 
T 2 ,  = do) + T*E?).  Using the Sommerfeld formula, the integral equations for 
E?) and E$ become 

E?)@) = H - 2xJGo(A) + 2 r' dA' Gl(A - A')E?)(A') 

+ 2 1 dA' G1(A - A')E?)(A'). 
B 

The free energy is then given by 

(7) 
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n2 dEy) -’ 
dA GO(A)&?)(A) - T 2  (- 3 1-1 dA Go(B) 

+ 2 1; dA Go(A)&i?,0). (9) 

Equation (7) is the ground-state integral equation solved for a small field (0 < H < J )  
by Babujian (1983). The parameter B increases monotonically with decreasing field and 
tends to infinity as H-, 0, approximately like B - -(n/2)ln H. 

Our procedure to solve the inte ralequation (8) is similar to the one used by Babujian 
to obtain e?). Defining q ( A )  = E? f: (A + B ) ,  we have that q ( A )  satisfies the equation 

+ Inm dA‘ (Gl(A - A’) + G1(A + A’ + 2B))q(A’) .  (10) 

We solve this equation iteratively, q ( A )  = q l ( A )  + q 2 ( A )  + . . . , where q2 is of higher 
order in 1/B than Q, 1. Since G,(B) - 1/B for large B ,  we separate the integral equations 
for q 1 ( A )  and q 2 ( A )  as follows: 

q z ( A )  = 9 1 ( - A  - 2 8 )  + dA‘ GI(A - h’)qz(A’) IoX 
etc. The equations (11) are of the Wiener-Hopf type and the solution q 1 ( A )  for A 2 0 is 
given by 

where 

g+(w) = VZi(-iiO/en)-iw/n/r(i - iw/n). 

Inserting q 1  into the free energy expression (9), we obtain that y = (1 + V\/)/3 in a 
small field. This result differs from the zero-field y-value, y = 3, but does not show 
logarithmic corrections as found for the susceptibility, equation (1). (Note that q2 can 
only contribute to order 1/B2 or higher, i.e., not to the logarithmic order of the two 
leading terms in (l).) The in-field y-value is less than 3 ,  the zero-field y ,  as expected, 
since the magnetic field polarises the spins of the system so that the entropy and specific 
heat are reduced. 

So far we have shown that the specific heat coefficient y in the presence of a magnetic 
field is different from the zero-field value, i.e., limH+o limT.+n y = (1 + d e / n ) / 3  # 
limT+n limH,o y = 3 .  Hence y depends on the way the point H = T = 0 is approached. 
In the following we derive an approximate interpolation formula between the above two 
limits, valid for very small H and T. 

If either IAI or the string length ~t are sufficiently large, the driving terms of the integral 
equations become small and the solution for &,(A) is asymptotically the free spin one, 
i.e. 
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E ,  = Tln{[sinh2(n + l)xo]/(sinh2 xo)} (13) 

where xo = H/T. We now approximate equation (3) for n = 1 by inserting the free spin 
E ,  for all n 3 2 and obtain 

= H ( T )  - 2nJGo + G I  * Tln(1 + eE1IT). (14) 

In this way we decoupled the integral equation for n = 1 from all others. Here H ( T )  is 
the effective field induced by the contributions of E ,  for n 3 2 at low T and is given by 

H ( T )  = Tln[(sinh 3xo)/(sinh 2xo)]. (15) 

Note that A ( T )  reduces to H as T+ 0, since xo+ x .  Because of our approximation, 
however, the low-field behaviour is not taken into account appropriately. In order to 
recover the correct zero-field y we incorporate a parameter a into A ( T )  (to be deter- 
mined later), so that 

B(T) = Tln{[sinh(2a + l)xo]/(sinh 2ax0)}. (15a) 

Note that equation (14) is just the integral equation (6) except for the replacement of 
the field H by the effective field f i ( T ) ,  so we can use the same procedure to solve the 
integral equation as before. In this way the free energy (J = 1) is given by 

F =  -In2 - (T2/6)(1 + V G )  - (H2(T)/n2)(1 + 1/2Ilnfil 

- In /In B[ /4  ln2 fi + . . .). (16) 

Note that at T = 0 this expression yields the correct low-field susceptibility given by 
equation (1). By differentiating with respect to Twe obtain the entropy of the system 

SIT = (1 + *)/3 + (2/n2) (Z-I(T)/T) [ f i ( T ) / T  + 2 ~ ~ x 0  coth 2 a ~ o / - ( 2 a  + l)xo 

x coth(2a + l)xo] (1 + 1/211n fil - lnlln H1/4 ln2 H + . . .). (17) 

In the limit T-, 0 with H finite (i.e., xo+ x ) ,  we recover the y-value, (1 + d\/)/3. 
On the other hand, the y-value in the zero-field limit (i.e. xo+ 0) is 

We determine the parameter a by equating (18) to the expected zero-field y = 4 ,  a = 
1.24. According to our interpolation formula, equation (17), the low-temperature 
specific heat coefficient y is monotonically decreasing from f to (1 + dG)/3 as xo is 
increased from zero to infinity. Note that equation (17) is valid only for fields and 
temperatures much smaller than the antiferromagnetic coupling. As a consequence the 
y-value is quite rapidly saturated to its value in the limit xo + x .  

The above arguments for the isotropic one-dimensional spin4 Heisenberg anti- 
ferromagnet can straightforwardly be extended to chains with higher spin and SU(2) 
invariance (Babujian (1983) model). 

Finally we would like to discuss our results in the context of the Kondo problem. The 
thermodynamic Bethe ansatz equations of the Heisenberg chain and the Kondo problem 
have a very similar structure and the analogy between the two models has frequently 
been invoked (Andrei et a1 1983, Tsvelick and Wiegmann 1983). For the Kondo problem, 
aconstant Wilsonratio, i.e. lim y / x  = 2n2/3, independent ofthe strengthofthemagnetic 
field, has been obtained. For the Heisenberg chain, on the other hand, our results prove 
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that y/x is not universal, imposing in this way some limitations in the correspondence 
between the physical properties of the two models. 

We would like to acknowledge the support by the US-DOE under the grant DE-FG02- 
ER45333. 
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